

DSC-725L

Differential scanning calorimeter

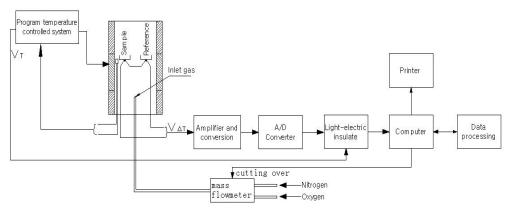
Differential scanning calorimetry (DSC), as a classical thermal analysis method to control the thermal effect at programmed temperature, has been widely used in research and development, process optimization, quality control and failure analysis in various fields of materials and chemistry. Using DSC method, we can study the phase transition of inorganic materials, the melting and crystallization process of polymer materials, the polymorphism of drugs, the solid/liquid ratio of foods such as oils and fats, etc.

main feature

- Simple operation, no testing experience, only a small amount of training.
- The software is suitable for computer screens with different resolutions.
- Double temperature probes ensure high accuracy and repeatability.
- During the experiment, there is no need for personnel supervision.
- Digital gas mass flowmeter automatically switches two gas flows.
- Software can be upgraded online for free.
- Seven-inch LCD display, the map and curve are clear at a glance.

technical parameter

DSC range	0~±200mW	temperature range	-150~725°C	
heating rate	0.1~50°C/min			
Refrigeration	Liquid nitrogen	Furnace body	Silver furnace body	
	refrigeration	material		
Temperature	±0.1°C	Temperature	Temperature $\pm 0.1^{\circ}$ C	
accuracy		repeatability		
DSC accuracy	±2%	DSC resolution	0.001mW	
DSC resolution	0.001mW	Temperature	Full automatic control,	
		control mode		
Curve scanning	Heating and cooling	Atmosphere	Digital mass flowmeter,	
	scanning	control	software control	
display mode	24bit color, 7-inch	working power	AC220V 50Hz/60Hz	
	touch screen	supply		
Size (w*d*h)	46*35*38cm	Net weight	20KG	
Packing size	58*45*40	Gross weight	23KG	
(w*d*h)				
	Minimum hardware configuration Minim		um software configuration	
	Celeron dual core W		Win10/11	
Computer	• 2GB system memor	ry •	Adobe PDF reader	

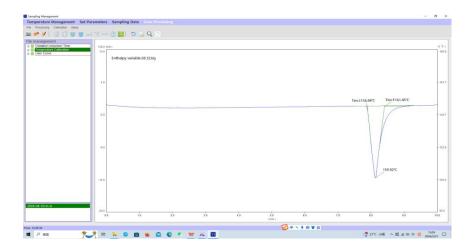

configuration	•	Resolution 1366*768 pixels or	
requirements		higher.	
	•	Hard disk 500G	

application example

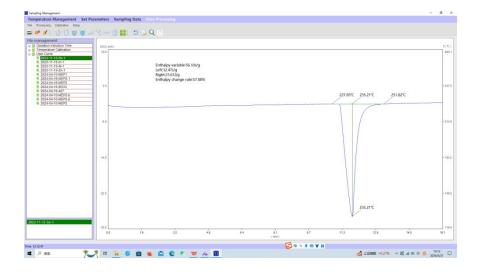
Measure physical and chemical changes related to heat, such as glass transition temperature, melting point, melting temperature, crystallization and crystallization heat, phase transition reaction heat, thermal stability of products, curing/crosslinking, oxidation induction period, reaction kinetics, specific heat, etc. Note: the thermal stability test during oxidation induction period is applicable to G B/T 1 7 3 9 1-1 9 9 8.

Instrument principle

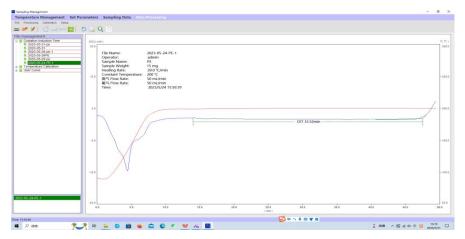
Differential scanning calorimetry (DSC) is a technique to measure the power difference between substance and reference under the control of programmed temperature. Differential scanning calorimeter is mainly composed of heating furnace, host, microvolt amplifier, A/D converter, data acquisition system, gas flow control system, computer, printer and other components, supplemented by the switching of two channels of atmosphere, and the measurement results are processed by computer data processing system.



Experimental atlas

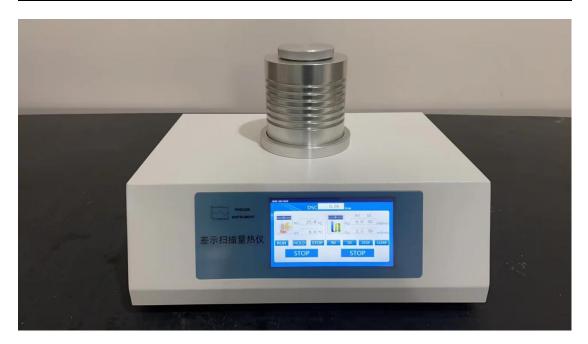

Sampling Management	Seque Version And And And And And And And And And An
emperature Management Set Parameters Sampling Data Data Processing	The manufacture and
Processing California Bala Transportade value & greater Endage danage state Endage danage state Distantial de la service Endage danage state Distantial de la service Banadh Distantial de la service Distantial de la servi	
Undo Current Dispose Clear Interface	ALL 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

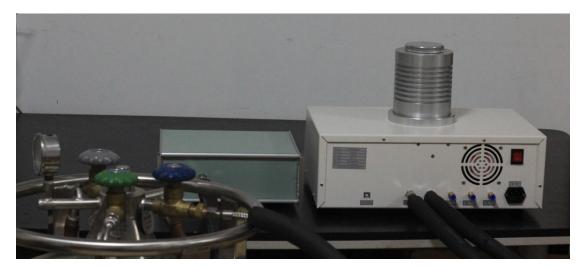
Interface of automatic calculation results of glass transition temperature



Enthalpy variable, epitaxial starting point, melting point calculation result interface

Enthalpy change ratio calculation result interface


Interface of calculation results of oxidation induction period



List of accessories of DSC-725L series

serial number	Nominal name	quantity
1	DSC-725L heating furnace and main cabinet	1 set
2	U disk of differential scanning calorimeter working program	1 piece
3	Software encryption dog	1
4	Liquid nitrogen hose	2 pieces
5	Liquid nitrogen flow control unit	1 set
6	feed cable	1 root
7	Signal cable (USB)	1 root
8	Glass tube fuse (10A)	4.
9	tweezers	1 branch
10	Sample spoon	1 branch
11	certificate	1 copy
12	Ventilation joint	4.
13	Aluminum crucible (ϕ 6.7 × 3 mm)/alumina crucible	200 each.
14	Standard samples (In, Sn, Zn, Al)	0.5g each
15	Description of DSC-725L Differential Scanning	1 copy
	Calorimeter	
16	Ventilation plastic pipe (blue)	3 meters
17	Ventilation plastic pipe (orange)	3 meters

